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Finite element simulation of microindentation

on aluminum
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Vickers indentation of 6061-T6 aluminum was modeled using a three-dimensional finite
element analysis (FEA) program. Two different work hardening behaviors were assumed.
The results were compared with actual indentations using both a static microindenter and
a load and depth recording microindenter. The hardness and plastic flow behavior showed
excellent agreement, validating the FEA model, and implying that the work hardening of
the aluminum decreases past a compressive strain of 0.09. The unloading results were
analyzed using Sneddon’s solution for the indentation of an elastic half-space by a rigid
axisymmetric indenter. The results confirm the validity of applying Sneddon’s solution in
this case, implying that Bolshakov and Pharr’s corrections of Sneddon’s solution (which
were determined for a conical indenter) are not directly applicable to the Vickers indenter.
C© 2001 Kluwer Academic Publishers

1. Introduction

The understanding of load and depth sensing microin-
dentation and nanoindentation tests for mechanical
property analysis has made great strides during the last
15 years, in large part due to better analytical and fi-
nite element simulations of the elastic-plastic material
response.

Traditionally, hardness tests such as the Vickers
Hardness test have been used to simply calculate a hard-
ness number which is characteristic of each material.
This type of test allows comparison between different
materials, and can be used for quality control purposes.
It must be recognized, however, that Vickers Hardness
is not a clearly defined material property but is instead
a complex function of fundamental material properties
such as elastic modulus, Poisson’s ratio, yield stress,
strain hardening, and time dependent plasticity. For cer-
tain materials additional factors such as surface energy,
fracture toughness, pressure induced phase changes,
anisotropic crystal structure, and grain size must be
taken into account as well. The combination of all of
these factors into one number, “VHN”, creates a situ-
ation where it is impossible to back-calculate material
properties from the indentation test.

The load and depth sensitive microindenter (dynamic
microindenter) is a large improvement over the tradi-
tional static indenter. Monitoring load and depth dur-
ing the indentation allows the calculation of additional
hardness terms which, given suitable formula(s), could
be used to calculate basic material properties. Unfortu-
nately, the problem is complicated due to the complex
inhomogeneous deformation of the indented material.

Until relatively recently these type of analyses relied
heavily upon either semi-empirical formulas or ana-
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lytical approximations. Some of the earliest work was
performed by Tabor [1], who studied conical indenta-
tions in metals. At nearly the same time Hill [2] showed
that, for perfectly rigid plastic materials (infinite elastic
modulus)

H/σy = constant (1)

whereH is the Vickers hardness andσy the plastic yield
stress. This relationship does not apply to highly elastic
materials or materials with strain hardening, however.
This work was expanded by the experimental results
of Hirst and Howse [3] who concluded that for wedge
shaped indenters

H/σy = A+ B ln(E/σy) (2)

where A and B are constants andE is the Young’s
modulus.

Johnson [4] expanded the work of Tabor and came
up with the equation

pav = 2

3
σr

(
1+ ln

E tanψ

3σy

)
(3)

where σr is the flow stress in uniaxial compression
which gives a plastic equivalent strain of 0.07,pav is the
average contact pressure (equivalent to “true” hardness)
andψ is the included angle of the indenter. Johnson
took the angleψ to be 19.7◦, which gives the same
volume of material displaced for a conical indentation
as for a Vickers indentation. This formula works sur-
prisingly well for materials with well defined constant
strain hardening so long as neither significant pileup nor
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“sinking in” of the material occurs. An attempt to ac-
count for the sinking in or piling up of the material was
undertaken by Giannakopouloset al. in 1994 [5]. With
the aid of a finite element model (using a small-strain
assumption), they derived

P=1.06h2(tan 22◦)−2σu

(
1+ σy

σu

)(
1+ ln

E tan 22◦

3σy

)
.

(4)

whereP is load,h is vertical displacement, andσu is
the “ultimate” stress, which they defined as the stress
at 30% plastic strain. In a paper by Zenget al. [6], the
same research group published the formula

P= 1.19h2(tan 22◦)−2σu

(
1+σy

σu

)(
1+ ln

E tan 22◦

3σy

)
(5)

The later formula takes into account the results of a
more accurate large-strain elastoplastic analysis. A sim-
ilarly derived formula for the average contact pressure is

pav = 0.30σu

(
1+ σy

σu

)(
1+ ln

E tan 22◦

3σy

)
. (6)

Equations 4–6 were deduced from curve-fitting of FEA
results and were presented as being accurate for materi-
als where 1≤ σu/σy≤ 3 and 2≤ tan(90−α)E/σy≤ 30
whereα is the indenter angle measured from the vertical
(i.e. 68◦ for a Vickers indenter). It should be noted that
these equations, taken in the extreme of infinite yield
stress (purely elastic), do not converge to the elastic
solutions.

The above Equations 5 and 6 are the basis for a sys-
tem developed by Zenget al. for the determination of
mechanical properties through indentation. This tech-
nique was applied to various brittle ceramic materials
with some success [6].

The unloading portion of the curve is generally ex-
pected to follow the power law relationship

P = B(h− hf )
m (7)

where B and m are fitting parameters andhf is the
displacement after unloading. The instantaneous slope
of the unloading curve,S, at the point of maximum load
is therefore given by

S= dP

dh
= mB(hmax− hf )

m−1. (8)

Knowing S, the Young’s modulus of the material can
then theoretically be derived by using the formula of
Sneddon [7]

Eeff = E

1− v2
= S

1.128
√

A
(9)

where Eeff is the effective Young’s modulus,E is
the Young’s modulus,v is Poisson’s ratio, andA is

the projected contact area. This formula was derived
for an axisymmetric punch indenting an elastic half
space, assuming small deformation. A refinement of
the analysis was provided by R. B. King, who con-
cluded that for a square punch (such as the Vickers dia-
mond) the term 1.128 in Equation 9 should be replaced
with 1.14 [8].

There exists some controversy as to the proper way
to derive the projected contact areaA from load vs.
displacement data. The simplest way to deriveA is by
taking the displacement at maximum load and calcu-
lating the projected area based on the geometry of the
indenter. The most commonly accepted method, how-
ever, is that suggested by Oliver and Pharr [9]. In their
method the true effective contact area is assumed to
be less than that given by the maximum depth (due to
elastic “sinking in” of the material). Their method in-
volves extrapolating the initial unloading slope to zero
load and using that depth,hc, to calculate the contact
area. Estimates of Young’s modulus calculated by this
method are denotedEOP in this paper.Earea denotes
that the modulus was calculated using the true contact
area as determined by FEA or direct observation.

1.1. Goals of the present analysis
It is the opinion of the authors that previous FEA inden-
tation studies have not adequately demonstrated thor-
ough agreement with experimental indentation data.
Hence the primary focus of this study is on develop-
ing a more accurate FEA model and demonstrating
close agreement with experimental static and record-
ing Vickers indentations. 6061-T6 aluminum was cho-
sen as an ideal subject material. 6061-T6 aluminum
is well characterized, is largely strain-rate independent
in its plasticity, and has a fine microstructure suitable
for microindentation with an isotropic assumption. The
demonstration of the accuracy of the FEA model on
such a material is critical to any further investigations
into materials that are not as well behaved or as well
characterized. Furthermore, a demonstrably accurate
FEA model allows for a critical evaluation of the for-
mulae presently available in the literature for analysis
of loading and unloading microindentation curves.

2. Experimental procedure
2.1. Finite element analysis
Finite element analysis was performed using the
ANSYS version 5.6 software package running on the
Windows NT platform. The material was treated as
a homogeneous, isotropic, and rate-independent body
with non-linear plasticity behavior on “VISCO107”
type elements. This type of element uses 8 node brick
elements and is specifically formulated to model large-
strain isochoric (volume preserving) behavior. For the
surface of contact, “CONTA173” surface to surface
contact elements were used for the deformable material
while a “TARGE170” element provided the diamond
face, which was assumed to be perfectly rigid. The con-
tact friction was assumed to be zero, which has been
shown to be a reasonable assumption for the high-load
test regime [10].
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Plasticity behavior was modeled using multilinear
isotropic hardening, which uses a von Mises stress yield
criterion coupled with a user defined strain hardening
curve and an associative flow rule. The actual equa-
tions solved are given in the ANSYS theory reference
[11]. An iterative Newton-Raphson solution process
was used (as necessitated by the non-linear behavior)
with a minimum of 20 substeps specified during both
the loading and unloading portions of the solution. The
actual analyses used more than 20 substeps due to the
adaptive descent feature of the ANSYS code which
automatically bisects any substep which exceeds 10%
plastic strain.

It should be noted that this type of elastic-plastic
formulation, while accurate for large plastic strains,
makes a hypoelastic assumption which is valid only for
small elastic strains. Hence materials with very high
hardness to Young’s modulus (H/E) ratios will have
less accuracy, and the FEA results will approach those
solved using a “small strain” assumption. It is possible
to increase the accuracy of the analysis by using a hyper-
elastic formulation. Hyperelastic constants for materi-
als other than rubber are not easy to measure nor widely
published, however. For aluminum, theH/E ratio is
small and hence the error introduced from the hypo-
elastic assumption is negligible.

2.2. Plasticity data
The uniaxial compressive stress-strain curve for 6061-
T6 aluminum was obtained from the results of Maiden
and Green [12]. The uniaxial compression curve was
translated to true tensile stress verses logarithmic strain
using the relationsτ = σ (1−εp) andεlp = − ln(1−εp)
whereτ is the true tensile stress,σ is the uniaxial com-
pression stress,εp is the plastic uniaxial compression
strain, andεlp is the logarithmic plastic strain. The com-
pression data of Maiden and Green ends at a strain of
0.09. Based upon previous work which indicated the
possibility that higher strains may be obtained in the
indentation process, the results of Maiden and Green
were extrapolated in two different ways. For analysis
“A” the behavior beyond 9% strain was assumed to be
ideally plastic (no further strain hardening). In analy-
sis “B” further strain hardening was assumed, with the
slope of the stress-strain curve extrapolated to infinity
as illustrated in Fig. 1. In both cases Young’s modulus
and Poisson’s ratio were held constant at 70 GPa and
0.28, respectively.

2.3. Mesh geometry
The geometry of the mesh is shown in Figs 2 and 3.
The model was built as a 45◦ slice of a cylinder, con-
sistent with the eight-fold symmetry of the Vickers di-
amond. Appropriate symmetrical boundary conditions
were applied. The model used 18018 solid elements.
The radial and vertical dimensions of the model were
50 times the indentation depth to ensure that the be-
havior approximated that of a semi-infinite body. The
validity of the assumption of semi-infinite body behav-
ior was confirmed by increasing the size of the model.
The results did not change significantly.

Figure 1 True tensile stress verses logarithmic strain for 6061-T6 alu-
minum showing two different work hardening assumptions.

Figure 2 The finite element model used for the present analysis. One-
eighth of the diamond indenter face is shown in contact with the specimen
at the top left corner.

The indentation was applied to the model by driv-
ing the target element (representing the face of the dia-
mond) vertically into the mesh to a distance of 200µm.
The properties of the material model do not allow for
any load dependence of hardness, so the results of the
200µm indentation can be extrapolated for any inden-
tation depth.

2.4. Static indentations
A sample of polished 6061-T6 aluminum was indented,
for comparison purposes, on a Buehler Micromet-II
micro-hardness tester at loads of 1.96, 4.91, and 9.81
Newtons. The dwell time at load was 10 seconds. Three
indentations were performed at each load. The resulting
indentations were analyzed using a video microscope
and image analysis software. Using this combination it
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Figure 3 A close-up view of the region of the model near the tip of the
indenter. The indenter itself has been removed from this view for clarity.

was possible to measure both traditional Vickers hard-
ness (measured across the diagonal of the impression)
and the “true” Vickers hardness (measured using the
area of the indentation.)

2.5. Dynamic indentations
The 6061-T6 sample was also indented using a load
and displacement sensing microindenter. The design,
instrumentation, and calibration of this device is de-
scribed in detail elsewhere [13]. Five indentations were
performed to a maximum load of 4.6 Newtons at an in-
dentation speed of 0.20µm/sec. Dwell time at load was
10 seconds. The resulting data were corrected using a
system compliance of 0.648µm/N. This compliance
factor was determined by “indenting” a large flat steel
punch into a steel specimen. All of the resulting dis-
placement in this case was assumed to be due to system
compliance.

2.6. Indentation profiling
The indentations made with both the static and dynamic
hardness testers were analyzed using a contact pro-
filometer (Tencor P-10). In this technique a diamond
probe is moved across the surface of the sample at a
very low load and the displacement of the tip is mea-
sured. For these measurements a load of 5 mg was used
and the tip speed was 10µm/sec. The depth resolution
was 1µm. The direction of scan was at a 45◦ angle
to the diagonal and centered on the impression. In this
manner both an accurate total indentation depth and
maximum height of material pileup can be measured.

3. Results and discussion
3.1. Terminology
A brief discussion of the nomenclature used to describe
the results is in order. The traditional Vickers hardness
number is given in units of kgf/mm2 and is abbreviated

“VHN”. In accordance with the SI system of units this
paper presents the results in GPa and hence “number”
has been dropped from the name to yield VH. Sub-
scripts denote deviations from the normal procedure
for measuring the area of the indentation. VHface, for
example, indicates that the area was calculated by mea-
suring the distance across the indentation faces and as-
suming that the indentation was square. The difference
between VHface and VH gives an indication of the de-
gree to which the indentation deviates from a square.
VHareaindicates that the area was measured directly.

Hardness computed from the load vs. displacement
data at the point of maximum load (Pmax) and maximum
displacement (hmax) is referred to as loaded Vickers
hardness (LVH). Hardness calculated usingPmax and
the unloaded displacement (hf ) is referred to as DVH
[14]. “Pileup” is a measure of the maximum upward
displacement of the material after unloading, expressed
as a percentage ofhf .

There is the question of how to properly measure
the indented area from the finite element analysis. Dur-
ing loading, the software allows a direct output of the
projected area of those elements which exhibit con-
tact. This area will be similar to, but slightly less than,
that measured by calculating the area enclosed by the
line of maximum upward displacement. After unload-
ing the area can again be calculated by direct output
of the projected area of the elements that had contact,
or through observation of the positions of maximum
displacement. It was determined that, after unloading,
the second method more closely approximates the area
which would be observed through a microscope after a
real indentation. Hence this was the method which was
used to calculate the area and the radial dimensions for
VHarea, VH, and VHface. During loading, however, the
first method was used to find the area for Young’s mod-
ulus calculations. The advantage of this method is that
it gives the true area used by the ANSYS software to
calculate the stiffness response.

3.2. Loading behavior
Fig. 4 shows the FEA load-displacement curves for the
aluminum modeled with the two strain hardening meth-
ods, overlaid with the recording microindenter for alu-
minum. The FEA data has been scaled to a peak load of
4.6 Newtons so that it may be more easily compared to
the experimental data. This scaling is only possible for
the FEM data because it is truly load independent. Note
that the proper way to scale this data requires a differ-
ent scaling factor for each axis. The penetration axis
is scaled by a constant, while the load axis is scaled
by that constant squared. Various parameters derived
from the FEA model and the recording microindenter
experiments are summarized in Table I and Table II.

The two different strain hardening methods show
only a relatively minor difference, indicating that the
hardness is notsubstantiallyinfluenced by hardening
at high strains (>0.09). This is in contrast to a previous
finite element analysis of Giannakopouloset al. [4] in
which they found that a constant hardening tangent in-
creased the hardness by nearly 50%. It is however in
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TABLE I Aluminum material properties calculated from the finite
element model and the recording microindenter

No hardening Constant hardening Recording indenter
“A” “B” (load 4.6 N)

Pileup (%) 19.7% 15.4% 19± 2% a

LVH (GPa) 1.04 1.06 1.04± 0.02
DVH (GPa) 1.22 1.24 1.23± 0.03
hf/hmax 0.925 0.925 0.90± 0.01
EOP/Etrue

b 1.23 1.16 1.86± 0.09
Earea/Etrue

b 1.05 1.03 1.74± 0.09
VHarea(GPa) 0.89 0.95 0.99± 0.01c

VHface (GPa) 0.83 0.82 0.91± 0.04c

VH (GPa) 1.00 1.02 1.13± 0.04c

aIndentations from the recording microindenter measured using the con-
tact profilometer.
bTrue (input) elastic modulus is 70 GPa.
cIndentations from the recording microindenter measured using the
video microscope.

Figure 4 6061-T6 aluminum load verses displacement data. Five ex-
perimental recording microindenter runs are shown combined with data
from the two FEM analyses. The inset shows a more detailed view of
initial unloading region. The FEM data has been scaled to a peak load
of 4.6 N.

good agreement with Equation 3, which predicts that
the hardening only up to a strain of 0.07 is significant.
One significant difference between the two FEA mod-
els is that model “B” (with constant strain hardening)
exhibited less pileup. Intuitively this makes sense, as
significant pileup requires large plastic strains of the
material close to the indented surface. Work hardening
at high strains impedes this process.

Average contact pressurepav calculated using Equa-
tion 3 and the correspondingE, σy, and σr values

TABLE I I Contact profilometer and video microscope data for the aluminum samples indented using the static indenter

contact profilometer video microscope

Load Pileup VHface DVH VH VH face VHarea

Sample N height (%) GPa GPa GPa GPa GPa

6061-1 9.81 22.22% 0.780 1.414 1.127 0.902 0.974
6061-2 9.81 16.99% 0.825 1.431 1.115 0.872 0.959
6061-3 9.81 18.21% 0.841 1.414 1.114 0.879 0.962
6061-4 4.90 21.08% 0.767 1.506 1.143 0.852 0.964
6061-5 4.90 21.81% 0.787 1.453 1.186 0.815 0.955
6061-6 1.96 20.87% 0.757 1.559 1.186 0.850 0.953
6061-7 1.96 19.78% 0.789 1.559 1.129 0.879 0.988
6061-8 1.96 17.03% 0.823 1.559 1.128 0.972 1.005

average 19.75% 0.796 1.487 1.141 0.878 0.970
standard deviation 2.10% 0.030 0.066 0.029 0.046 0.018

Figure 5 The vertical displacement at the edge and face of model “A”.
The elastic recovery occurs primarily in the vertical direction.

(70 GPa, 280 MPa, and 354.8 MPa respectively) is
1.04 GPa. Average contact pressures from the FEA
(using Pmax and the true projected contact area) are
0.93 and 1.03 GPa for runsA andB respectively. There
are no experimental measurements which correlate di-
rectly to pav due to the fact that true projected contact
area cannot be measured during loading. However the
finite element model indicates thatthe area of indenta-
tion does not change significantly upon unloading; the
elastic recovery occurrs primarily in the vertical direc-
tion as shown in Fig. 5. Hence VHareacan be expected
to closely approximatepav.

LVH values calculated using Giannakopouloset al.’s
Equation 5 and assumingσu to be 365 and 473 MPa
(corresponding to FEA models “A” and “B”) are 0.76
and 0.83 GPa respectively. These value are significantly
too low; however, it must be said that the value of
tan(90− α)E/σy lies outside the valid range for this
equation given in reference [6].

Model “A”, with no strain hardening past a strain of
0.09, is a closer match to the experimental data in every
respect. The plastic height (pileup), LVH, and VHarea
all match the experimental data very closely. Model
“B”, which has a constant strain hardening tangent, ex-
hibits hardness values which could also be construed
as being in rough agreement with the experimental val-
ues. Model “B” has a significantly lower plastic height,
however. It must be concluded that model “A” is a more
accurate model of the true strain hardening behavior of
6061-T6 aluminum.
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TABLE I I I Size of the zone of plastic deformation for models “A”
and “B”, expressed as a function ofhmax

Model “A” Model “B”

Along the edge 6.46· hmax 6.53· hmax

Along the face 6.38· hmax 6.72· hmax

Vertical 7.33· hmax 7.67· hmax

3.3. Plastic zones
The dimensions of the zone of plastic deformation were
found to deviate only slightly from hemispherical, be-
ing slightly deeper than wide. Model “B” has a larger
plastic zone than “A”, as illustrated by Table III which
expresses the dimensions of the plastic zone scaled to
the total indentation depthhmax. Previous work has
shown that work hardening has a tendency to drive the
plastic zone to greater depths [15]. The present work
shows that, in this case, additional work hardening also
slightly expands the radius of the plastic zone.

3.4. Unloading behavior
While both FEA curves agree quite well with the ex-
perimental results during the loading portion, there are
some discrepancies in the unloading cycle. The experi-
mental curves exhibit greater curvature towards the end
of the unloading cycle and slightly less curvature in the
initial portion. The net effect yields a higher calculated
elastic modulus for the experimental curve. Some of
this difference may be attributable to inertial effects
caused by the mass of the indentation column. It is also
possible that the indentation stage and frame do not per-
form exactly as ideal Hookean springs, but rather ex-
hibit some non-ideal elastic or even viscoelastic behav-
ior. Whatever the cause, the short distance over which
the aluminum recovers exacerbates the problem and
increases the sensitivity of the unloading results to the
correction factor.

It is useful to compare the elastic modulus derived
from the FEA load vs. displacement value with the elas-
tic modulus input into the model. The ratio of the two
provides an indication of the accuracy of Sneddon’s
solution. When the modulus is calculated using the
Oliver-Pharr method the calculated values are 23% and
16% too large for models A and B respectively. This
is not unexpected because the Oliver-Pharr method as-
sumes that there is sinking-in of the material instead of
pileup. Therefore, for a highly plastic material such as
aluminum, the Oliver-Pharr method can be expected to
underestimate the true contact area. When the true con-
tact area is taken into account the calculated modulus
is larger than the true modulus by only 3.7% and 0.1%.

Some insight into the causes of overestimation of
Young’s modulus is provided by the work of Bolshakov
and Pharr [15]. Their finite element model used a coni-
cal indenter for the advantage in processing time, which
allowed them to examine hypothetical materials over
a range of yield stresses both with and without work
hardening. In their analysis they assumed work hard-
ening to be linear with strain, with a slope equal to
10σy. They found it useful to classify the different ma-

terial responses according to the ratiohf/hmax, the ratio
of the unloaded depth to the depth at maximum load.
For hf/hmax <0.7, they found the FEM estimation of
Earea/Einput to be consistently 5–10% too high. They
attribute this difference to an inaccuracy in Sneddon’s
solution and, in a separate paper [16], treat the problem
analytically. The correction they derived for a conical
indenter is

Eeff = E

1− v2
= 1

β

√
π

2

S√
A

where

β = 1+ (1− 2v)

4(1− v)

(
3− π

2

)
cot(φ) (10)

Taking the indenter angleφ as 70.3◦ (giving the same
area to depth relationship as the Vickers diamond) and
v= 0.28, the correction to Sneddon’s formula,β, is
1.078. This correction does not account for the FEA
estimation ofEarea/Einput when hf/hmax> 0.7 how-
ever. Bolshakov and Pharr found that in this regime the
Earea/Einput values increases with increasinghf/hmax.
Forhf/hmax= 0.93 (corresponding to the present anal-
ysis of aluminum) they found the error to be 15% and
13% for zero strain hardening and constant strain hard-
ening (atv= 0.25). When one corrects these values to
v= 0.28, assuming that the results will scale in the same
ratio as Equation 10, the errors decrease to 14% and
12% respectively. This correction is much higher than
the small discrepancy showed by the present analysis.
Hence the corrections derived by Bolshakov and Pharr
for a conical indenter are shown by the present study
to be inapplicable to a true three-dimensional Vickers
indentation in aluminum.

3.5. Indentation shape
Although models “A” and “B” had nearly identical hard-
ness values, there is a significant difference in the de-
gree of pileup. Fig. 6 shows the indentation shapes after
unloading. The viewing plane bisects two faces of the
indentation, the plane showing the highest amount of
pileup. In this figure the FEA data has been scaled to

Figure 6 Unloaded indentation shapes perpendicular to the pyramid
faces for the two FEM models and the a representative contact pro-
filometer trace. The FEM curves have been scaled so that the peak loads
are the same (4.6 N).
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the same peak load as the indentations done with the
recording microindenter (4.6 N). Representative data
from the contact profilometer is included. The contact
profilometer data is not perfectly symmetrical, this be-
ing due to side-loading forces on the profilometer tip as
it moves down and then up the wall of the indentation.
These forces (known as arcal error) have a tendency to
steepen the downward slope, as the diamond tip is bent
in the direction of motion, and flatten the upward slope.
In Fig. 6 the scan direction is from left to right.

Additionally, the profilometer is not able to ade-
quately capture the very sharp tip of the indentation
and hence this point must be inferred by extrapolation.
When this is done the unloaded depthhf from the pro-
filometer is close to, but still less than, the FEA depth
despite the similarity in indentation width. Actually,
this difference inhf affects the reported pileup values,
which are given as a percentage ofhf . Because of this,
the tabulated values of pileup indicate that model “A”
is a very close match to the experimental results. How-
ever, when the pileup is considered as a function of
load instead ofhf , the experimental pileup lies between
models “A” and “B”.

4. Conclusions
In this paper we have presented results for a new three-
dimensional FEA numerical model of Vickers inden-
tation applied to 6061-T6 aluminum. Using only the
known elastic properties and compressive stress-strain
data a reasonably accurate portrait of the indentation
process has been drawn. The agreement with exper-
imental static and recording indentation data is excel-
lent, particularly during the loading cycle, and the shape
of the unloaded indentation given by the FEA is nearly
identical to that measured using contact profilometry.
The FEA model confirmed that elastic recovery upon
unloading occurs primarily in thez (depth) direction.
The discrepancies between the FEA and the experi-
mental data observed during the unloading portion of
the P-h curve are minor and may be ascribed to small
instrumental errors.

Varying the work hardening behavior of the mate-
rial input into the FEA model at strains greater than
0.09 showed only a minor effect on the hardness, in
sharp disagreement with some previous FEA work by

Giannakopouloset al. The cause of the discrepancy is
unknown at this time and is expected to be addressed
in later work.

Analysis of the P-h curve at unloading demonstrates
that Sneddon’s solution for calculating Young’s mod-
ulus can be accurate even for highly plastic materials,
but only if the appropriate area of contact is used in the
calculation. The present methods for determining this
area of contact from the P-h curve are insufficient for
materials such as aluminum which exhibit significant
piling up of material at the indentation edges.
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